[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
RESOURCES EXPLORATION

Application of array acoustic logging technology in volcanic reservoir evaluation

  • WU Yuyu ,
  • ZHAO Zuoan ,
  • LAI Qiang ,
  • ZHUANG Chunxi ,
  • ZHANG Yihua ,
  • WANG Zeyu
Expand
  • 1. Exploration and Development Research Institute, PetroChina Southwest Oil & Gasfield Company, Chengdu, Sichuan 610041, China;
    2. PetroChina Southwest Oil & Gasfield Company, Chengdu, Sichuan 610051, China;
    3. China University of Petroleum (East China), Qingdao, Shandong 266555, China;
    4. Southwest Branch, China Petroleum Engineering & Construction Corporation, Chengdu, Sichuan 610017, China

Revised date: 2023-07-20

  Online published: 2023-09-21

Abstract

To finely evaluate the effectiveness and gas potential of volcanic reservoirs of the Permian in the Sichuan Basin, an in-depth study was conducted on array acoustic logging data. A method for evaluating reservoir effectiveness was established based on the Stoneley wave attenuation, and reflection wave and P-wave velocity tomography. And a method for discriminating reservoir fluid property was developed using the rock mechanical parameters calculated from array acoustic data. Finally, the development of fractures/vugs near wellbore was quantitatively characterized by dipole S-wave remote detection, providing reasonable interpretations for single-well testing. The research results are as follows: (i) Volcanic reservoirs in the Sichuan Basin are mainly composed of volcaniclastic rocks, characterized by good reservoir properties, significant Stoneley wave attenuation, high reflection coefficient (higher in the low-frequency interval than in the high-frequency interval), obvious radial variation of acoustic velocity in formation, and significant hysteresis of the arrival time curve, reflecting strong permeability and good effectiveness of reservoir. (ii) When the formation contains gas, the velocity ratio of P wave to S wave decreases, the Poisson’s ratio decreases while the bulk modulus increases. The envelope area derived by the intersection of Poisson’s ratio and bulk modulus can effectively discriminate the gas potential of reservoir. (iii) The image of dipole S-wave remote detection shows that high-angle fractures are developed outside the interval of Well T2, which provide pathways for formation water, resulting in formation water produced from gas-bearing interval.

Cite this article

WU Yuyu , ZHAO Zuoan , LAI Qiang , ZHUANG Chunxi , ZHANG Yihua , WANG Zeyu . Application of array acoustic logging technology in volcanic reservoir evaluation[J]. Natural Gas Exploration and Development, 2023 , 46(3) : 33 -41 . DOI: 10.12055/gaskk.issn.1673-3177.2023.03.004

[an error occurred while processing this directive]

References

[1] 马新华, 杨雨, 张健, 等. 四川盆地二叠系火山碎屑岩气藏勘探重大发现及其启示[J]. 天然气工业, 2019, 39(2): 1-8.
MA Xinhua, YANG Yu, ZHANG Jian, et al.A major discovery in Permian volcanic rock gas reservoir exploration in the Sichuan Basin and its implications[J]. Natural Gas Industry, 2019, 39(2): 1-8.
[2] 吴煜宇, 谢冰, 伍丽红, 等. 四川盆地二叠系基性火山岩测井评价技术—以永探1井区火山岩为例[J]. 天然气工业, 2019, 39(2): 37-45.
WU Yuyu, XIE Bing, WU Lihong, et al.Logging based lithology identification of Permian mafic volcanic rocks in the Sichuan Basin: A case study from the Well Yongtan 1[J]. Natural Gas Industry, 2019, 39(2): 37-45.
[3] 宋文海, 庞家黎. 四川盆地西南部上二叠统玄武岩含气性研究[J]. 天然气工业, 1994, 16(5): 11-15.
SONG Wenhai, PANG Jiali.Gas-bearing study of P2 basalt in the southwest part of Sichuan Basin[J]. Natural Gas Industry, 1994, 16(5): 11-15.
[4] 吴煜宇, 李亚, 赖强, 等. 川西地区火山碎屑熔岩气层低阻成因浅析[J]. 天然气勘探与开发, 2021, 44(1): 55-62.
WU Yuyu, LI Ya, LAI Qiang, et al.Genesis of low resistivity in pyroclastic lava gas reservoirs, western Sichuan Basin[J]. Natural Gas Exploration and Development, 2021, 44(1): 55-62.
[5] 张福明, 侯颖, 朱明, 等. 火山岩储层测井评价技术现状及发展趋势[J]. 地球物理学进展, 2016, 31(4): 1732-1751.
ZHANG Fuming, HOU Ying, ZHU Ming, et al.Present situation and development trend prospect in volcanic reservoir evaluation based on well logging data[J]. Progress in Geophysics, 2016, 31(4): 1732-1751.
[6] 屈洋, 刘庆. 松辽盆地北部安达凹陷中基性火山岩储层孔隙结构及渗流机理研究[J]. 天然气勘探与开发, 2018, 41(1): 69-73.
QU Yang, LIU Qing.Pore structures and seepage mechanisms of intermediate-basic volcanic reservoirs in Anda Sag, northern Songliao Basin[J]. Natural Gas Exploration and Development, 2018, 41(1): 69-73.
[7] 耿祎晗, 陈浩, 何晓, 等. 纵波速度径向层析成像分析[J]. 应用声学, 2017, 36(4): 349-356.
GENG Yihan, CHEN Hao, HE Xiao, et al.Analysis of radial detection characteristics of compressional waves[J]. Journal of Applied Acoustics, 2017, 36(4): 349-356.
[8] 刘航, 吴煜宇, 贺洪举, 等. 阵列声波测井处理新技术在碳酸盐岩储层评价方面的应用[J]. 地球物理学进展, 2023, 38(1): 220-228.
LIU Hang, WU Yuyu, HE Hongju, et al.Application of new processing technology of array acoustic logging in carbonate reservoir evaluation[J]. Progress in Geophysics, 2023, 38(1): 220-228.
[9] 李长文, 强毓明, 李国利, 等. 现代声波测井技术发展的若干特点[J]. 测井技术, 2006, 30(2): 101-104.
LI Changwen, QIANG Yuming, LI Guoli, et al.Characteristics of modern acoustic logging technology development[J]. Well Logging Technology, 2006, 30(2): 101-104.
[10] 罗利, 刘航, 刘海军, 等. XMAC-F1反射横波远探测成像技术及其应用[J]. 天然气工业, 2017, 37(6): 28-33.
LUO Li, LIU Hang, LIU Haijun, et al.XMAC-F1 reflected-shear-wave remote detection imaging technology and its application[J]. Natural Gas Industry, 2017, 37(6): 28-33.
[11] 唐晓明, 魏周拓. 利用井中偶极声源远场辐射特性的远探测测井[J]. 地球物理学报, 2012, 55(8): 2798-2807.
TANG Xiaoming, WEI Zhoutuo.Single-well acoustic reflection imaging using far-field radiation characteristics of a borehole dipole source[J]. Chinese Journal of Geophysics, 2012, 55(8): 2798-2807.
[12] 唐军, 章成广, 信毅. 油基钻井液条件下裂缝声波测井评价方法—以塔里木盆地库车坳陷克深地区致密砂岩储集层为例[J]. 石油勘探与开发, 2017, 44(3): 389-397.
TANG Jun, ZHANG Chengguang, XIN Yi.A fracture evaluation by acoustic logging technology in oil-based mud: A case from tight sandstone reservoirs in Keshen area of Kuqa depression, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2017, 44(3): 389-397.
[13] 车小花, 赵腾, 乔文孝, 等. 多极子声波测井的裂缝识别与评价[J]. 石油与天然气地质, 2020, 41(6): 1263-1272.
CHE Xiaohua, ZHAO Teng, QIAO Wenxiao, et al.Fracture identification and evaluation based on multi-pole acoustic logging[J]. Oil & Gas Geology, 2020, 41(6): 1263-1272.
[14] 胡文祥. 阵列声波资料的斯通利波提取及裂缝评价[J]. 江汉石油学院学报, 1994, 16(增刊1): 17-22.
HU Wenxiang.Extraction of Stoneley waveform and evaluation of fracture information from array acoustic logging waveforms[J]. Journal of Jianghan Petroleum Institute, 1994, 16(S1): 17-22.
[15] 牟瑜, 张蕾, 罗少成, 等. 基于斯通利波能量分析的碳酸盐岩储层渗透性评价[J]. 测井技术, 2019, 43(4): 386-390.
MU Yu, ZHANG Lei, LUO Shaocheng, et al.Permeability evaluation of carbonate reservoirs through Stoneley wave energy analysis[J]. Well Logging Technology, 2019, 43(4): 386-390.
[16] 宋延杰, 王雪萍, 何英伟, 等. XMAC斯通利波波场分离方法[J]. 大庆石油学院学报, 2008, 32(5): 9-12.
SONG Yanjie, WANG Xueping, HE Yingwei, et al.Wave field separation method for Stoneley-wave of XMAC[J]. Journal of Daqing Petroleum Institute, 2008, 32(5): 9-12.
[17] HORNBY B E, JOHNSON D L, WINKLER K W, et al.Fracture evaluation using reflected Stoneley-wave arrivals[J]. Geophysics, 1989, 54(10): 1274-1288.
[18] TANG X M, BOLSHAKOV A, PATTERSON D, et al.Integrated acoustic evaluation of reservoir fractures: from borehole out into the formation[J]. Petrophysics, 2011, 52(3): 199-206.
[19] 唐晓明, 许松, 庄春喜, 等. 基于弹性波速径向变化的岩石脆裂性定量评价[J]. 石油勘探与开发, 2016, 43(3): 417-424.
TANG Xiaoming, XU Song, ZHUANG Chunxi, et al.Quantitative evaluation of rock brittleness and fracability based on elastic-wave velocity variation around borehole[J]. Petroleum Exploration and Development, 2016, 43(3): 417-424.
[20] 翟宇文, 唐晓明, 魏周拓, 等. 径向速度变化地层井孔声场的快速模拟[J]. 声学技术, 2015, 34(5): 403-406.
ZHAI Yuwen, TANG Xiaoming, WEI Zhoutuo, et al.Fast modeling of borehole acoustic p-waves in the presence of radial velocity variation[J]. Technical Acoustics, 2015, 34(5): 403-406.
[21] 张永军, 顾定娜, 马肃滨, 等. 阵列声波测井资料在吐哈油田致密砂岩气层识别中的应用[J]. 测井技术, 2012, 36(2): 175-178.
ZHANG Yongjun, GU Dingna, MA Subin, et al.The application of array acoustic wave data to tight sandstone gas reservoir in Tuha Oilfield[J]. Well Logging Technology, 2012, 36(2): 175-178.
[22] 曹先军, 李国军, 苗秀英, 等. 基于岩石力学参数的马家沟中下组合气层识别方法[J]. 测井技术, 2020, 44(2): 198-203.
CAO Xianjun, LI Guojun, MIAO Xiuying, et al.Application of the gas recognition method based on rock mechanics in middle-lower Majiagou formation[J]. Well Logging Technology, 2020, 44(2): 198-203.
[23] 边会媛, 潘保芝, 王飞, 等. 基于横波测井资料的神经网络火山岩流体性质识别[J]. 测井技术, 2013, 37(3): 264-268.
BIAN Huiyuan, PAN Baozhi, WANG Fei, et al.Volcanic reservoirs fluid identification by neural network based on shear wave log data[J]. Well Logging Technology, 2013, 37(3): 264-268.
Outlines

/

[an error occurred while processing this directive]